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Studies of the dielectric function ϵ(K, ω) by optical spectroscopy are very useful in
the determination of the overall band structure of a crystal, and optical
spectroscopy has developed into the most important experimental tool for band
structure determination. In the infrared, visible, and ultraviolet spectral regions the
wavevector of the radiation is very small (K≃0) compared with the shortest
reciprocal lattice vector, and therefore it may usually be taken as zero. We are
concerned then with the real ϵ’ and imaginary parts ϵ” of the dielectric function at
zero wavevector; ϵ(ω) = ϵ’(ω) + iϵ”(ω). However, the directly accessible functions
from optical measurements are the reflectance R(ω), the refractive index n(ω), and
the extinction coefficient K(ω). Our first objective is to relate the experimentally
observable quantities to the real and imaginary parts of the dielectric function.

The reflectivity coefficient r(ω) is a complex function defined at the crystal surface
as the ratio of the reflected electric field E(refl) to the incident electric field E(inc):
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chapter 15: optical processes and excitons

The dielectric function !(",K) was introduced in the preceding chapter to
describe the response of a crystal to an electromagnetic field (Fig. 1). The di-
electric function depends sensitively on the electronic band structure of a
crystal, and studies of the dielectric function by optical spectroscopy are very
useful in the determination of the overall band structure of a crystal. Indeed,
optical spectroscopy has developed into the most important experimental tool
for band structure determination.

In the infrared, visible, and ultraviolet spectral regions the wavevector of
the radiation is very small compared with the shortest reciprocal lattice vector,
and therefore it may usually be taken as zero. We are concerned then with the
real !! and imaginary !" parts of the dielectric function at zero wavevector;
!(") # !!(") $ i!"("), also written as !1(") $ i!2(").

However, the dielectric function is not directly accessible experimentally
from optical measurements: the directly accessible functions are the reflect-
ance R("), the refractive index n("), and the extinction coefficient K("). Our
first objective is to relate the experimentally observable quantities to the real
and imaginary parts of the dielectric function.

OPTICAL REFLECTANCE

The optical measurements that give the fullest information on the elec-
tronic system are measurements of the reflectivity of light at normal incidence
on single crystals. The reflectivity coefficient r(") is a complex function de-
fined at the crystal surface as the ratio of the reflected electric field E(refl) to
the incident electric field E(inc):

(1)

where we have separated the amplitude #(") and phase $(") components of
the reflectivity coefficient.

The refractive index n(") and the extinction coefficient K(") in the
crystal are related to the reflectivity at normal incidence by

(2)

as derived in Problem 3 by elementary consideration of the continuity of the
components of E and B parallel to the crystal surface. By definition, n(") and
K(") are related to the dielectric function !(") by

(3)!!(") ! n(") $ iK(") ! N(")� ,

r(") # 

n $ iK % 1
n $ iK $ 1� ,

E(refl)/E(inc) ! r(") ! #(") exp[i$(")]� ,
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Here, ρ(ω) and 𝜃(ω) are the amplitude and phase components of the reflectivity
coefficient, respectively.

Macroscopic Properties



At normal incidence, the reflectivity r and reflectance R in the crystal can be
expressed as

By definition, n(ω) and K(ω) are related to the dielectric function ϵ(ω) by 
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,  where N(ω) is the complex refractive index. 

The transmitted wave in the medium is attenuated because, by the dispersion
relation for electromagnetic waves, the wavevector in the medium is related to the
incident wavevector k in vacuum by (n + iK)k:

where N(!) is the complex refractive index. Do not confuse K(!) as used here
with the symbol for a wavevector.

If the incident traveling wave has the wavevector k, then the y component
of a wave traveling in the x direction is

(4)

The transmitted wave in the medium is attenuated because, by the dispersion
relation for electromagnetic waves, the wavevector in the medium is related to
the incident k in vacuum by (n ! iK)k:

(5)

One quantity measured in experiments is the reflectance R, defined as
the ratio of the reflected intensity to the incident intensity:

(6)

It is difficult to measure the phase "(!) of the reflected wave, but we show
below that it can be calculated from the measured reflectance R(!) if this is
known at all frequencies.

Once we know both R(!) and "(!), we can proceed by (2) to obtain n(!)
and K(!). We use these in (3) to obtain #(!) " ##(!) ! i#$(!), where ##(!) and
#$(!) are the real and imaginary parts of the dielectric function. The inversion
of (3) gives

(7)

We now show how to find the phase "(!) as an integral over the re-
flectance R(!); by a similar method we relate the real and imaginary parts of
the dielectric function. In this way we can find everything from the experi-
mental R(!).

Kramers-Kronig Relations

The Kramers-Kronig relations enable us to find the real part of the re-
sponse of a linear passive system if we know the imaginary part of the response
at all frequencies, and vice versa. They are central to the analysis of optical
experiments on solids.

The response of any linear passive system can be represented as the su-
perposition of the responses of a collection of damped harmonic oscillators
with masses Mj. Let the response function $(!) " $#(!) ! i$$(!) of the col-
lection of oscillators be defined by

(8)

where the applied force field is the real part of F! exp(%i!t) and the total dis-
placement is the real part of x! exp(%i!t). From the equation of motion,

Mj(d2/dt2
 ! % 

j 

d/dt ! !2
j )xj " F� ,

x " !
j

 xj

x! " $(!)F!� ,

#!(!) " n2 % K2� ; � � # "(!) " 2nK� .

R " E*(refl)E(refl)/E*(inc)E(inc) " r*r " %2� .

Ey(trans) ! exp {[i[(n ! iK)kx % wt]} " exp(%Kkx) exp[i(nkx % !t)]� .

Ey(inc) " Ey0 exp[i(kx % !t)]� .
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From the experimental we can measure the intensity of the reflected wave, which is
termed the reflectance R(ω) = r*(ω)r(ω). We also need to know the phase 𝜃(ω) of the
reflected wave in order to obtain n(ω) and K(ω), but It is difficult to measure 𝜃(ω).
We show below that it can be calculated from the measured reflectance R(ω) if this is
known at all frequencies.

429

chapter 15: optical processes and excitons

The dielectric function !(",K) was introduced in the preceding chapter to
describe the response of a crystal to an electromagnetic field (Fig. 1). The di-
electric function depends sensitively on the electronic band structure of a
crystal, and studies of the dielectric function by optical spectroscopy are very
useful in the determination of the overall band structure of a crystal. Indeed,
optical spectroscopy has developed into the most important experimental tool
for band structure determination.

In the infrared, visible, and ultraviolet spectral regions the wavevector of
the radiation is very small compared with the shortest reciprocal lattice vector,
and therefore it may usually be taken as zero. We are concerned then with the
real !! and imaginary !" parts of the dielectric function at zero wavevector;
!(") # !!(") $ i!"("), also written as !1(") $ i!2(").

However, the dielectric function is not directly accessible experimentally
from optical measurements: the directly accessible functions are the reflect-
ance R("), the refractive index n("), and the extinction coefficient K("). Our
first objective is to relate the experimentally observable quantities to the real
and imaginary parts of the dielectric function.

OPTICAL REFLECTANCE

The optical measurements that give the fullest information on the elec-
tronic system are measurements of the reflectivity of light at normal incidence
on single crystals. The reflectivity coefficient r(") is a complex function de-
fined at the crystal surface as the ratio of the reflected electric field E(refl) to
the incident electric field E(inc):

(1)

where we have separated the amplitude #(") and phase $(") components of
the reflectivity coefficient.

The refractive index n(") and the extinction coefficient K(") in the
crystal are related to the reflectivity at normal incidence by

(2)

as derived in Problem 3 by elementary consideration of the continuity of the
components of E and B parallel to the crystal surface. By definition, n(") and
K(") are related to the dielectric function !(") by

(3)!!(") ! n(") $ iK(") ! N(")� ,

r(") # 

n $ iK % 1
n $ iK $ 1� ,

E(refl)/E(inc) ! r(") ! #(") exp[i$(")]� ,

DI���RYE����������������1.��1BHF����

The result is the motivation for the introduction of the energy loss function
!Im{1/!(",k)} and it is also a motivation for experiments on energy losses by
fast electrons in thin films.

If the dielectric function is independent of k, the power loss is

(44)

where !k0 is the maximum possible momentum transfer from the primary par-
ticle to an electron of the crystal. Figure 19 shows the excellent experimental
agreement between values of !""(") deduced from optical reflectivity measure-
ments with values deduced from electron energy loss measurements.

SUMMARY

• The Kramers-Kronig relations connect the real and imaginary parts of a
response function:

• The complex refractive index N(") # n(") $ iK("), where n is the refrac-
tive index and K is the extinction coefficient; further, !(") # N2("), whence
!"(") # n2 ! K2 and !""(") # 2nK.

• The reflectance at normal incidence is

R # 
(n ! 1)2 $ K 

2

(n $ 1)2 $ K 

2� .

#"(") # 

2
$ P !!

0
 

s##(s)
s2

 ! "2 ds� ; � � ##(") # !2"
$  P !!

0
 

#"(s)
s2

 ! "2 ds� .

!(") # !2
$ e2

!v
 Im{1/!(")}ln(k0v/")� ,
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the other lines were calculated from optical measurements by D. Beaglehole, and L. R. Canfield et al.
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Kramers-Kronig Relations

we have the complex response function of the oscillator system:

(9)

where the constants fj ! 1/Mj and relaxation frequencies !j are all positive for
a passive system.

If "(#) is the dielectric polarizability of atoms in concentration n, then f
has the form of an oscillator strength times ne2/m; such a dielectric response
function is said to be of the Kramers-Heisenberg form. The relations we de-
velop also apply to the electrical conductivity $(#) in Ohm’s law, j# ! $(#)E#.

We need not assume the specific form (9), but we make use of three prop-
erties of the response function viewed as a function of the complex variable #.
Any function with the following properties will satisfy the Kramers-Kronig
relations (11):

(a) The poles of "(#) are all below the real axis.
(b) The integral of "(#)/# vanishes when taken around an infinite semi-

circle in the upper half of the complex #-plane. It suffices that "(#) m 0 uni-
formly as |#| m !.

(c) The function ""(#) is even and "#(#) is odd with respect to real #.

Consider the Cauchy integral in the form

(10)

where P denotes the principal part of the integral, as discussed in the mathe-
matical note that follows. The right-hand side is to be completed by an integral
over the semicircle at infinity in the upper half-plane, but we have seen in (b)
that this integral vanishes.

We equate the real parts of (10) to obtain

In the last integral we substitute s for $p and use property (c) that """($s) !
$"""(s); this integral then becomes

and we have, with
1

s $ #
 % 

1
s % #

 ! 

2 s
s2

 $ #2� ,

!!

0
 

"!(s)
s % #

 ds� ,

""(#) ! 1% P !!

$!
 
" !(s)
s $ # ds ! 1% P "!!

0
 
"!(s)
s$ # ds % ! 0

$!
 
"!(p)
p $ # dp#� .

"(#) ! 

1
%i  P!

!

$!
 

"(s)
s $ #  ds� ,

"(#) ! $ 

j

fj

#2
j  $ #2

 $ i#!j
 ! $  fj 

#2
j  $ #2

 % i#!j

(#2
j  $ #2)2

 % #2!2
j
� ,
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(a) The poles of α(ω) are all below the real axis.
(b) The integral of α(ω)/ω vanishes when taken around an infinite semicircle in the

upper half of the complex ω-plane. It suffices that α(ω)→0 uniformly as ∣ω∣→∞.
(c) The function α’(ω) is even and α”(ω) is odd with respect to real ω.

The complex response function of the oscillator system is 

where N(!) is the complex refractive index. Do not confuse K(!) as used here
with the symbol for a wavevector.

If the incident traveling wave has the wavevector k, then the y component
of a wave traveling in the x direction is

(4)

The transmitted wave in the medium is attenuated because, by the dispersion
relation for electromagnetic waves, the wavevector in the medium is related to
the incident k in vacuum by (n ! iK)k:

(5)

One quantity measured in experiments is the reflectance R, defined as
the ratio of the reflected intensity to the incident intensity:

(6)

It is difficult to measure the phase "(!) of the reflected wave, but we show
below that it can be calculated from the measured reflectance R(!) if this is
known at all frequencies.

Once we know both R(!) and "(!), we can proceed by (2) to obtain n(!)
and K(!). We use these in (3) to obtain #(!) " ##(!) ! i#$(!), where ##(!) and
#$(!) are the real and imaginary parts of the dielectric function. The inversion
of (3) gives

(7)

We now show how to find the phase "(!) as an integral over the re-
flectance R(!); by a similar method we relate the real and imaginary parts of
the dielectric function. In this way we can find everything from the experi-
mental R(!).

Kramers-Kronig Relations

The Kramers-Kronig relations enable us to find the real part of the re-
sponse of a linear passive system if we know the imaginary part of the response
at all frequencies, and vice versa. They are central to the analysis of optical
experiments on solids.

The response of any linear passive system can be represented as the su-
perposition of the responses of a collection of damped harmonic oscillators
with masses Mj. Let the response function $(!) " $#(!) ! i$$(!) of the col-
lection of oscillators be defined by

(8)

where the applied force field is the real part of F! exp(%i!t) and the total dis-
placement is the real part of x! exp(%i!t). From the equation of motion,

Mj(d2/dt2
 ! % 

j 

d/dt ! !2
j )xj " F� ,

x " !
j

 xj

x! " $(!)F!� ,
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e−iωt , Fω is the applied force and xω the displacement. 

From the equation of motion, 

The Kramers–Kronig relations are bidirectional mathematical relations, connecting
the real and imaginary parts of any complex function that is analytic in the upper
half-plane. The relations are often used to compute the real part from the
imaginary part (or vice versa) of response functions in physical systems. The
response of any linear passive system can be represented as the superposition of
the responses of a collection of j damped harmonic oscillators with masses Mj. Let
the response function α(ω) = α’(ω) + iα”(ω) of the collection of oscillators be
defined by
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a passive system.

If "(#) is the dielectric polarizability of atoms in concentration n, then f
has the form of an oscillator strength times ne2/m; such a dielectric response
function is said to be of the Kramers-Heisenberg form. The relations we de-
velop also apply to the electrical conductivity $(#) in Ohm’s law, j# ! $(#)E#.

We need not assume the specific form (9), but we make use of three prop-
erties of the response function viewed as a function of the complex variable #.
Any function with the following properties will satisfy the Kramers-Kronig
relations (11):

(a) The poles of "(#) are all below the real axis.
(b) The integral of "(#)/# vanishes when taken around an infinite semi-

circle in the upper half of the complex #-plane. It suffices that "(#) m 0 uni-
formly as |#| m !.

(c) The function ""(#) is even and "#(#) is odd with respect to real #.

Consider the Cauchy integral in the form

(10)

where P denotes the principal part of the integral, as discussed in the mathe-
matical note that follows. The right-hand side is to be completed by an integral
over the semicircle at infinity in the upper half-plane, but we have seen in (b)
that this integral vanishes.
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Substitute p for −s and use property (c) that α”(−s) = − α”(s), then

we have the complex response function of the oscillator system:

(9)
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a passive system.
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we have the complex response function of the oscillator system:
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where P denotes the principal part of the integral and the right-hand side is to
integrate over the semicircle at infinity in the upper half-plane. We equate the real
parts of the equation to obtain

to the integral, where s ! ! " u ei". The segments (1) and (3) are by definition
the principal part of the integral between #! and !. Because the integral
over (1) " (2) " (3) " (4) must vanish,

(15)

as in (10).

EXAMPLE: Conductivity of Collisionless Electron Gas. Consider a gas of free
electrons in the limit as the collision frequency goes to zero. From (9) the response
function is, with f ! 1/m,

(16)

by the Dirac identity. We confirm that the delta function in (16) satisfies the Kramers-
Kronig relation (11a), by which

(17)

in agreement with (16).
We obtain the electrical conductivity #(!) from the dielectric function

(18)

where $(!) ! x!/(#e)E! is the response function. We use the equivalence

(CGS) (19)

for the Maxwell equation can be written either as c curl H ! 4%#(!)E # i!E or as 
c curl H ! #i!&(!)E. We combine (16), (18), and (19) to find the conductivity of a 
collisionless electron gas:

(20)

For collisionless electrons the real part of the conductivity has a delta function at ! ! 0.
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The segments (1) and (3) are by definition the principal
part of the integral between −∞ and ∞. Because the
integral over (1) + (2) + (3) + (4) must vanish,

the result

(11a)

This is one of the Kramers-Kronig relations. The other relation follows on
equating the imaginary parts of Eq. (10):

whence

(11b)

These relations are applied below to the analysis of optical reflectance data;
this is their most important application.

Let us apply the Kramers-Kronig relations to r(!) viewed as a response func-
tion between the incident and reflected waves in (1) and (6). We apply (11) to

(12)

to obtain the phase in terms of the reflectance:

(13)

We integrate by parts to obtain a form that gives insight into the contribu-
tions to the phase angle:

(14)

Spectral regions in which the reflectance is constant do not contribute to the
integral; further, spectral regions s ! ! and s " ! do not contribute much be-
cause the function ln |(s # !)/(s $ !)| is small in these regions.

Mathematical Note. To obtain the Cauchy integral (10) we take the inte-
gral over the contour in Fig. 2. The function "(s) is analytic in
the upper half-plane, so that the value of the integral is zero. The contribution
of segment (4) to the integral vanishes if the integrand "(s)/s m 0 is faster than
|s|$1 as |s| m !. For the response function (9) the integrand m 0 as |s|$3; and
for the conductivity #(s) the integrand m 0 as |s|$2. The segment (2) con-
tributes, in the limit as u m 0,
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the result

(11a)

This is one of the Kramers-Kronig relations. The other relation follows on
equating the imaginary parts of Eq. (10):

whence

(11b)

These relations are applied below to the analysis of optical reflectance data;
this is their most important application.

Let us apply the Kramers-Kronig relations to r(!) viewed as a response func-
tion between the incident and reflected waves in (1) and (6). We apply (11) to

(12)

to obtain the phase in terms of the reflectance:

(13)

We integrate by parts to obtain a form that gives insight into the contribu-
tions to the phase angle:

(14)

Spectral regions in which the reflectance is constant do not contribute to the
integral; further, spectral regions s ! ! and s " ! do not contribute much be-
cause the function ln |(s # !)/(s $ !)| is small in these regions.

Mathematical Note. To obtain the Cauchy integral (10) we take the inte-
gral over the contour in Fig. 2. The function "(s) is analytic in
the upper half-plane, so that the value of the integral is zero. The contribution
of segment (4) to the integral vanishes if the integrand "(s)/s m 0 is faster than
|s|$1 as |s| m !. For the response function (9) the integrand m 0 as |s|$3; and
for the conductivity #(s) the integrand m 0 as |s|$2. The segment (2) con-
tributes, in the limit as u m 0,

!
(2)

 

"(s)
s $ !  ds l "(!) ! 0

$
 

iu ei% d%
u ei%  % $$i"(!)

""(s)(s $ !)$1
 ds

%(!) % $ 1
2$

  !!

0
 ln # s # !

s $ !
# d ln R(s)

ds
 ds� .

%(!) % $!
$ P !!

0
 

ln R(s)
s2

 $ !2 ds� .

ln r(!) % ln R1/2(!) # i%(!)

" !(!) % $2!
$  P !!

0
 

""(s)
s2

 $ !2 ds� .

"!(!) % $1
$ P !!

$!
 

""(s)
s $ ! ds % $1

$ P $!!

0
 
""(s)
s $ ! ds $ !!

0
 
""(s)
s # ! ds%� ,

""(!) % 

2
$ P !!

0
 

s"!(s)
s2

 $ !2 ds� .

432

DI���RYE����������������1.��1BHF����

−

to the integral, where s ! ! " u ei". The segments (1) and (3) are by definition
the principal part of the integral between #! and !. Because the integral
over (1) " (2) " (3) " (4) must vanish,

(15)

as in (10).

EXAMPLE: Conductivity of Collisionless Electron Gas. Consider a gas of free
electrons in the limit as the collision frequency goes to zero. From (9) the response
function is, with f ! 1/m,

(16)

by the Dirac identity. We confirm that the delta function in (16) satisfies the Kramers-
Kronig relation (11a), by which

(17)

in agreement with (16).
We obtain the electrical conductivity #(!) from the dielectric function

(18)

where $(!) ! x!/(#e)E! is the response function. We use the equivalence

(CGS) (19)

for the Maxwell equation can be written either as c curl H ! 4%#(!)E # i!E or as 
c curl H ! #i!&(!)E. We combine (16), (18), and (19) to find the conductivity of a 
collisionless electron gas:

(20)

For collisionless electrons the real part of the conductivity has a delta function at ! ! 0.

#!(!) " i# "(!) ! 

ne2

m  !%'(!) " 

i
!"� .

#(!) ! (#i!/4%)[&(!) # 1]� ,

&(!) # 1 ! 4%P! /E! ! #4%nex! /E! ! 4%ne2$(!)� ,

$!(!) ! 

2
m  #!

0
 

'(s)
s2

 # !2 ds ! #
1

m!2� ,

$(!) ! # 1
m! lim

(l0
 

1
! " i( ! # 1

m! !1
! # i%'(!)"� ,

#
(1)

 " #
(3)

#
 

P  #!

#!
 

$(s)
s # ! ds ! %i$(!)� ,

15  Optical Processes and Excitons 433

1 32

4

!
Figure 2  Contour for the Cauchy principal value
integral.

DI���RYE����������������1.��1BHF����

to the integral, where s ! ! " u ei". The segments (1) and (3) are by definition
the principal part of the integral between #! and !. Because the integral
over (1) " (2) " (3) " (4) must vanish,

(15)

as in (10).

EXAMPLE: Conductivity of Collisionless Electron Gas. Consider a gas of free
electrons in the limit as the collision frequency goes to zero. From (9) the response
function is, with f ! 1/m,

(16)

by the Dirac identity. We confirm that the delta function in (16) satisfies the Kramers-
Kronig relation (11a), by which
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in agreement with (16).
We obtain the electrical conductivity #(!) from the dielectric function

(18)

where $(!) ! x!/(#e)E! is the response function. We use the equivalence

(CGS) (19)

for the Maxwell equation can be written either as c curl H ! 4%#(!)E # i!E or as 
c curl H ! #i!&(!)E. We combine (16), (18), and (19) to find the conductivity of a 
collisionless electron gas:

(20)

For collisionless electrons the real part of the conductivity has a delta function at ! ! 0.
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to the integral, where s ! ! " u ei". The segments (1) and (3) are by definition
the principal part of the integral between #! and !. Because the integral
over (1) " (2) " (3) " (4) must vanish,

(15)

as in (10).

EXAMPLE: Conductivity of Collisionless Electron Gas. Consider a gas of free
electrons in the limit as the collision frequency goes to zero. From (9) the response
function is, with f ! 1/m,

(16)

by the Dirac identity. We confirm that the delta function in (16) satisfies the Kramers-
Kronig relation (11a), by which

(17)

in agreement with (16).
We obtain the electrical conductivity #(!) from the dielectric function

(18)

where $(!) ! x!/(#e)E! is the response function. We use the equivalence

(CGS) (19)

for the Maxwell equation can be written either as c curl H ! 4%#(!)E # i!E or as 
c curl H ! #i!&(!)E. We combine (16), (18), and (19) to find the conductivity of a 
collisionless electron gas:

(20)

For collisionless electrons the real part of the conductivity has a delta function at ! ! 0.
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the result

(11a)

This is one of the Kramers-Kronig relations. The other relation follows on
equating the imaginary parts of Eq. (10):

whence

(11b)

These relations are applied below to the analysis of optical reflectance data;
this is their most important application.

Let us apply the Kramers-Kronig relations to r(!) viewed as a response func-
tion between the incident and reflected waves in (1) and (6). We apply (11) to

(12)

to obtain the phase in terms of the reflectance:

(13)

We integrate by parts to obtain a form that gives insight into the contribu-
tions to the phase angle:

(14)

Spectral regions in which the reflectance is constant do not contribute to the
integral; further, spectral regions s ! ! and s " ! do not contribute much be-
cause the function ln |(s # !)/(s $ !)| is small in these regions.

Mathematical Note. To obtain the Cauchy integral (10) we take the inte-
gral over the contour in Fig. 2. The function "(s) is analytic in
the upper half-plane, so that the value of the integral is zero. The contribution
of segment (4) to the integral vanishes if the integrand "(s)/s m 0 is faster than
|s|$1 as |s| m !. For the response function (9) the integrand m 0 as |s|$3; and
for the conductivity #(s) the integrand m 0 as |s|$2. The segment (2) con-
tributes, in the limit as u m 0,
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We can apply the Kramers-Kronig relations to r(ω) viewed as a response function
between the incident and reflected waves.

429

chapter 15: optical processes and excitons

The dielectric function !(",K) was introduced in the preceding chapter to
describe the response of a crystal to an electromagnetic field (Fig. 1). The di-
electric function depends sensitively on the electronic band structure of a
crystal, and studies of the dielectric function by optical spectroscopy are very
useful in the determination of the overall band structure of a crystal. Indeed,
optical spectroscopy has developed into the most important experimental tool
for band structure determination.

In the infrared, visible, and ultraviolet spectral regions the wavevector of
the radiation is very small compared with the shortest reciprocal lattice vector,
and therefore it may usually be taken as zero. We are concerned then with the
real !! and imaginary !" parts of the dielectric function at zero wavevector;
!(") # !!(") $ i!"("), also written as !1(") $ i!2(").

However, the dielectric function is not directly accessible experimentally
from optical measurements: the directly accessible functions are the reflect-
ance R("), the refractive index n("), and the extinction coefficient K("). Our
first objective is to relate the experimentally observable quantities to the real
and imaginary parts of the dielectric function.

OPTICAL REFLECTANCE

The optical measurements that give the fullest information on the elec-
tronic system are measurements of the reflectivity of light at normal incidence
on single crystals. The reflectivity coefficient r(") is a complex function de-
fined at the crystal surface as the ratio of the reflected electric field E(refl) to
the incident electric field E(inc):

(1)

where we have separated the amplitude #(") and phase $(") components of
the reflectivity coefficient.

The refractive index n(") and the extinction coefficient K(") in the
crystal are related to the reflectivity at normal incidence by

(2)

as derived in Problem 3 by elementary consideration of the continuity of the
components of E and B parallel to the crystal surface. By definition, n(") and
K(") are related to the dielectric function !(") by

(3)!!(") ! n(") $ iK(") ! N(")� ,

r(") # 

n $ iK % 1
n $ iK $ 1� ,

E(refl)/E(inc) ! r(") ! #(") exp[i$(")]� ,
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=	R1/2exp[i𝜃(ω)]

We apply the second Kramers-Kronig relations, then

the result

(11a)

This is one of the Kramers-Kronig relations. The other relation follows on
equating the imaginary parts of Eq. (10):

whence

(11b)

These relations are applied below to the analysis of optical reflectance data;
this is their most important application.

Let us apply the Kramers-Kronig relations to r(!) viewed as a response func-
tion between the incident and reflected waves in (1) and (6). We apply (11) to

(12)

to obtain the phase in terms of the reflectance:

(13)

We integrate by parts to obtain a form that gives insight into the contribu-
tions to the phase angle:

(14)

Spectral regions in which the reflectance is constant do not contribute to the
integral; further, spectral regions s ! ! and s " ! do not contribute much be-
cause the function ln |(s # !)/(s $ !)| is small in these regions.

Mathematical Note. To obtain the Cauchy integral (10) we take the inte-
gral over the contour in Fig. 2. The function "(s) is analytic in
the upper half-plane, so that the value of the integral is zero. The contribution
of segment (4) to the integral vanishes if the integrand "(s)/s m 0 is faster than
|s|$1 as |s| m !. For the response function (9) the integrand m 0 as |s|$3; and
for the conductivity #(s) the integrand m 0 as |s|$2. The segment (2) con-
tributes, in the limit as u m 0,
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the result

(11a)

This is one of the Kramers-Kronig relations. The other relation follows on
equating the imaginary parts of Eq. (10):

whence

(11b)

These relations are applied below to the analysis of optical reflectance data;
this is their most important application.

Let us apply the Kramers-Kronig relations to r(!) viewed as a response func-
tion between the incident and reflected waves in (1) and (6). We apply (11) to

(12)

to obtain the phase in terms of the reflectance:

(13)

We integrate by parts to obtain a form that gives insight into the contribu-
tions to the phase angle:

(14)

Spectral regions in which the reflectance is constant do not contribute to the
integral; further, spectral regions s ! ! and s " ! do not contribute much be-
cause the function ln |(s # !)/(s $ !)| is small in these regions.

Mathematical Note. To obtain the Cauchy integral (10) we take the inte-
gral over the contour in Fig. 2. The function "(s) is analytic in
the upper half-plane, so that the value of the integral is zero. The contribution
of segment (4) to the integral vanishes if the integrand "(s)/s m 0 is faster than
|s|$1 as |s| m !. For the response function (9) the integrand m 0 as |s|$3; and
for the conductivity #(s) the integrand m 0 as |s|$2. The segment (2) con-
tributes, in the limit as u m 0,
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Spectral regions in which the reflectance is constant do not contribute to the
integral; further, spectral regions s >> ω and s << ω do not contribute much because

the function ln |(s + ω)/(s − ω)| is small in these regions.

We have the Kramers-Kronig relations: the result
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and



Absorption Spectrum of a Semiconductor
There are several processes involved
in absorption, but the main five are:
1. Absorption due to electronic

transitions between bands that
involve wavelengths typically less
than ten micrometers;

2. Absorption by excitons at
wavelengths with energies just
below the absorption edge due
to valence conduction band
transitions;

3. Excitation and ionization of impurities that involve wavelengths ranging from
about one micrometer to one thousand micrometers;

4. Excitation of lattice vibrations (optical phonons) in polar solids for which the
usual wavelengths are ten to fifty micrometers;

5. Free-carrier absorption for frequencies up to the plasma edge, which is
particularly important in metals.

10.10 Lattice Absorption, Restrahlen, and Polaritons (B)      579 

Table 10.2. Selected lattice frequencies and dielectric constants 

Crystal ȦT (cm–1) ȦL (cm–1) İ(0) (cgs) İ(�) (cgs) 

InSb  185 197  17.88  15.68 
GaAs  269 292  12.9  10.9 
NaCl  164 264  5.9  2.25 
KBr  113 165  4.9  2.33 
LiF  306 659  8.8  1.92 

AgBr  79 138  13.1  4.6 

From Anderson HL (ed), A Physicists Desk Reference 2nd edn, American In-
stitute of Physics, Article 20: Frederikse HPR, Table 20.02.B.1 p.312, 1989,
with permission of Springer-Verlag. Original data from Mitra SS, Handbook 
on Semiconductors, Vol 1, Paul W (ed), North-Holland, Amsterdam, 1982, 
and from Handbook of Optical Constants of Solids, Palik ED (ed), Academic 
Press, Orlando, FL, 1985. 

10.10.3  Summary of Absorption Processes: General Equations (B) 

Much of what we have discussed can be summed up in Fig. 10.13. Summary ex-
pressions for the dielectric constants are given in (10.67) and (10.68). See also Yu 
and Cardona [10.27, p. 251], and Cohen [10.8] as well as Cohen and Chelikowsky 
[10.9, p31]. 

 
Fig. 10.13. Sketch of absorption coefficient of a typical semiconductor such as GaAs. 
Adapted from Elliott and Gibson [10.11, p. 208] 

λ, nm 

1240 12400124



For a charged particle in the valence band, the Hamiltonian is

The Fermi golden rule can be used for calculating the transition probability rate for
an electron that is excited by a photon from the valence band to the conduction
band in a direct band-gap semiconductor. Consider an EM wave of frequency ω and
wavevector q, its electric field is

Fermi Golden Rule

,  A is the vector potential of the EM wave.

where H’ is the perturbation of the EM wave. From here on we have transition
probability based on time-dependent perturbation theory that

and

μcv is the transition dipole moment matrix element with the expectation
value of .



Electronic Interband Transitions
Direct interband absorption of a photon ℏω will occur at all points in the Brillouin
zone for which energy is conserved: . The total absorption at given
ω is an integral over all transitions in the zone that satisfy the energy conservation
and usually is broad and featureless. However, the energy-conservation relation does
not exclude spectral structure in a crystal, because transitions accumulate at
frequencies for which the bands c, v are parallel — that is, at frequencies where

Electronic Interband Transitions

It came as a surprise that optical spectroscopy developed as an important
experimental tool for the determination of band structure. First, the absorp-
tion and reflection bands of crystals are broad and apparently featureless func-
tions of the photon energy when this is greater than the band gap. Second,
direct interband absorption of a photon !! will occur at all points in the Bril-
louin zone for which energy is conserved:

(21)

where c is an empty band and v is a filled band. The total absorption at given !
is an integral over all transitions in the zone that satisfy (21).

Three factors unraveled the spectra:

• The broad bands are not like a spectral line greatly broadened by damping,
but the bands convey much intelligence which emerges when derivatives are
taken of the reflectance (Fig. 3); derivatives with respect to wavelength,
electric field, temperature, pressure, or uniaxial stress, for example. The
spectroscopy of derivatives is called modulation spectroscopy.

!! ! "c(k) " "v(k)� ,
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Figure 3  Comparison of (a) reflectance, (b) wavelength derivative reflectance (first derivative),
and (c) electroreflectance (third derivative), of the spectral region in germanium between 3.0 and
3.6 eV. (After data by D. D. Sell, E. O. Kane, and D. E. Aspnes.)
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. At these critical points in k space the joint density of states
Dc(ϵv+ℏω)Dv(ϵv) is singular.

• The relation (21) does not exclude spectral structure in a crystal, because
transitions accumulate at frequencies for which the bands c, v are parallel—
that is, at frequencies where

(22)

At these critical points in k space the joint density of states Dc(!v !
!")Dv(!v) is singular, according to the same argument we used in (5.37) to
show that the density of phonon modes D(") is singular when k" is zero.

• The pseudopotential method for calculating energy bands helps identify the
positions in the Brillouin zone of the critical points found in modulation
spectra. Band-band energy differences can be calculated with an accuracy as
good as 0.1 eV. The experimental results can then be fed back to give im-
provements in the pseudopotential calculations.

EXCITONS

Reflectance and absorption spectra often show structure for photon
energies just below the energy gap, where we might expect the crystal to be
transparent. This structure is caused by the absorption of a photon with the
creation of a bound electron-hole pair. An electron and a hole may be bound
together by their attractive coulomb interaction, just as an electron is bound to
a proton to form a neutral hydrogen atom.

The bound electron-hole pair is called an exciton, Fig. 4. An exciton can
move through the crystal and transport energy; it does not transport charge

"

"k[!c(k) # !v(k)] $ 0� .
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Figure 4a  An exciton is a bound electron-hole pair,
usually free to move together through the crystal. In
some respects it is similar to an atom of positronium,
formed from a positron and an electron. The exciton
shown is a Mott-Wannier exciton: it is weakly bound,
with an average electron-hole distance large in com-
parison with the lattice constant.
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Figure 4b  A tightly-bound or Frenkel exciton shown local-
ized on one atom in an alkali halide crystal. An ideal Frenkel
exciton will travel as a wave throughout the crystal, but the
electron is always close to the hole.
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Electronic Interband Transitions

It came as a surprise that optical spectroscopy developed as an important
experimental tool for the determination of band structure. First, the absorp-
tion and reflection bands of crystals are broad and apparently featureless func-
tions of the photon energy when this is greater than the band gap. Second,
direct interband absorption of a photon !! will occur at all points in the Bril-
louin zone for which energy is conserved:

(21)

where c is an empty band and v is a filled band. The total absorption at given !
is an integral over all transitions in the zone that satisfy (21).

Three factors unraveled the spectra:

• The broad bands are not like a spectral line greatly broadened by damping,
but the bands convey much intelligence which emerges when derivatives are
taken of the reflectance (Fig. 3); derivatives with respect to wavelength,
electric field, temperature, pressure, or uniaxial stress, for example. The
spectroscopy of derivatives is called modulation spectroscopy.
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Figure 3  Comparison of (a) reflectance, (b) wavelength derivative reflectance (first derivative),
and (c) electroreflectance (third derivative), of the spectral region in germanium between 3.0 and
3.6 eV. (After data by D. D. Sell, E. O. Kane, and D. E. Aspnes.)
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The broad bands convey much intelligence
which emerges when derivatives are taken of
the reflectance derivatives with respect to
wavelength, electric field, temperature,
pressure, or uniaxial stress, etc. One example
is shown in the right figure the spectral
region in germanium between 3.0 and 3.6 eV.



Excitons 

• The relation (21) does not exclude spectral structure in a crystal, because
transitions accumulate at frequencies for which the bands c, v are parallel—
that is, at frequencies where

(22)

At these critical points in k space the joint density of states Dc(!v !
!")Dv(!v) is singular, according to the same argument we used in (5.37) to
show that the density of phonon modes D(") is singular when k" is zero.

• The pseudopotential method for calculating energy bands helps identify the
positions in the Brillouin zone of the critical points found in modulation
spectra. Band-band energy differences can be calculated with an accuracy as
good as 0.1 eV. The experimental results can then be fed back to give im-
provements in the pseudopotential calculations.

EXCITONS

Reflectance and absorption spectra often show structure for photon
energies just below the energy gap, where we might expect the crystal to be
transparent. This structure is caused by the absorption of a photon with the
creation of a bound electron-hole pair. An electron and a hole may be bound
together by their attractive coulomb interaction, just as an electron is bound to
a proton to form a neutral hydrogen atom.

The bound electron-hole pair is called an exciton, Fig. 4. An exciton can
move through the crystal and transport energy; it does not transport charge

"

"k[!c(k) # !v(k)] $ 0� .
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Figure 4a  An exciton is a bound electron-hole pair,
usually free to move together through the crystal. In
some respects it is similar to an atom of positronium,
formed from a positron and an electron. The exciton
shown is a Mott-Wannier exciton: it is weakly bound,
with an average electron-hole distance large in com-
parison with the lattice constant.
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Figure 4b  A tightly-bound or Frenkel exciton shown local-
ized on one atom in an alkali halide crystal. An ideal Frenkel
exciton will travel as a wave throughout the crystal, but the
electron is always close to the hole.
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Reflectance and absorption spectra often show structure for photon energies just
below the energy gap, where we might expect the crystal to be transparent. This
structure is caused by the absorption of a photon with the creation of a bound
electron-hole pair.

Frenkel Excitons

In a tightly bound exciton (Fig. 4b) the excitation is localized on or near a
single atom: the hole is usually on the same atom as the electron although the
pair may be anywhere in the crystal. A Frenkel exciton is essentially an excited
state of a single atom, but the excitation can hop from one atom to another by
virtue of the coupling between neighbors. The excitation wave travels through
the crystal much as the reversed spin of a magnon travels through the crystal.

The crystalline inert gases have excitons which in their ground states cor-
respond somewhat to the Frenkel model. Atomic krypton has its lowest strong
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Exciton levels Energy gap, Eg

Conduction band
(effective mass me)

Valence band
(effective mass mh)

k
Figure 5  Exciton levels in relation to the conduction band edge, for a simple band structure with
both conduction and valence band edges at k ! 0. An exciton can have translational kinetic en-
ergy. Excitons are unstable with respect to radiative recombination in which the electron drops
into the hole in the valence band, accompanied by the emission of a photon or phonons.

Energy gap

Exciton binding
energyExciton levels

Conduction band continuum

Valence band continuum
0

Eg

Eg – Eex

Eex

Figure 6  Energy levels of an exciton created in a direct process. Optical transitions from the top
of the valence band are shown by the arrows; the longest arrow corresponds to the energy gap.
The binding energy of the exciton is Eex, referred to a free electron and free hole. The lowest fre-
quency absorption line of the crystal at absolute zero is not Eex, but is Eg " Eex.
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The lowest frequency absorption line of the crystal at absolute zero is not Eg , but is
Eg − Eex. Eex is the binding energy of the exciton. An exciton can have translational
kinetic energy. Excitons are unstable with respect to radiative recombination in which
the electron drops into the hole in the valence band, accompanied by the emission
of a photon or phonons.



Mott-Wannier Excitons
Consider an electron in the conduction band and a hole in the valence band. The pair
is weakly bound and attracts each other by the coulomb potential

Weakly Bound (Mott-Wannier) Excitons

Consider an electron in the conduction band and a hole in the valence
band. The electron and hole attract each other by the coulomb potential

(CGS) (31)

where r is the distance between the particles and ! is the appropriate dielec-
tric constant. (The lattice polarization contribution to the dielectric constant
should not be included if the frequency of motion of the exciton is higher than
the optical phonon frequencies.) There will be bound states of the exciton sys-
tem having total energies lower than the bottom of the conduction band.

The problem is the hydrogen atom problem if the energy surfaces for the
electron and hole are spherical and nondegenerate. The energy levels referred
to the top of the valence band are given by a modified Rydberg equation

(CGS) (32)

Here n is the principal quantum number and " is the reduced mass:

(33)

formed from the effective masses me, mh of the electron and hole.
The exciton ground state energy is obtained on setting n ! 1 in (32); this

is the ionization energy of the exciton. Studies of the optical absorption lines
in cuprous oxide, Cu2O, at low temperatures give results for the exciton level
spacing in good agreement with the Rydberg equation (32) except for transi-
tions to the state n ! 1. An empirical fit to the lines of Fig. 10 is obtained with
the relation #(cm"1) ! 17,508 " (800/n2). Taking ! ! 10, we find " 0.7 m
from the coefficient of 1/n2. The constant term 17,508 cm"1 corresponds to an
energy gap Eg ! 2.17 eV.

Exciton Condensation into Electron-Hole Drops (EHD)

A condensed phase of an electron-hole plasma forms in Ge and Si when
maintained at a low temperature and irradiated by light. The following sequence
of events takes place when an electron-hole drop (EHD) is formed in Ge: The
absorption of a photon of energy !$ # Eg produces a free electron and free hole,
with high efficiency. These combine rapidly, perhaps in 1 ns, to form an exciton.
The exciton may decay with annihilation of the e-h pair with a lifetime of 8 "s.

If the exciton concentration is sufficiently high—over 1013 cm"3 at 2 K—
most of the excitons will condense into a drop. The drop lifetime is 40 "s, but
in strained Ge may be as long as 600 "s. Within the drop the excitons dissolve
into a degenerate Fermi gas of electrons and holes, with metallic properties:
this state was predicted by L. V. Keldysh.

!

1
" ! 

1
me

 $ 

1
mh

� ,

En ! Eg 

" 

"e4

2!2!2n2� .

U(r) ! "e2/!r� ,
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where r is the distance between the particles and ϵ is
the appropriate dielectric constant.

Figure 11 shows the recombination radiation in Ge from free excitons 
(714 meV) and from the EHD phase (709 meV). The width of the 714 meV
line is accounted for by Doppler broadening, and the width of the 709 meV
line is compatible with the kinetic energy distribution of electrons and holes in
a Fermi gas of concentration 2 ! 1017 cm"3. Figure 12 is a photograph of a
large EHD.
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Figure 10  Logarithm of the optical transmission versus photon energy in cuprous oxide at 77 K,
showing a series of exciton lines. Note that on the vertical axis the logarithm is plotted decreasing
upward; thus a peak corresponds to absorption. The band gap Eg is 2.17 eV. (After P. W. Baumeister.)
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Figure 11  Recombination radiation of free electrons with holes and of electron-hole drops in Ge
at 3.04 K. The Fermi energy in the drop is "F and the cohesive energy of the drop with respect to a
free exciton is $s. (After T. K. Lo.)
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CuO2

Weakly Bound (Mott-Wannier) Excitons

Consider an electron in the conduction band and a hole in the valence
band. The electron and hole attract each other by the coulomb potential

(CGS) (31)

where r is the distance between the particles and ! is the appropriate dielec-
tric constant. (The lattice polarization contribution to the dielectric constant
should not be included if the frequency of motion of the exciton is higher than
the optical phonon frequencies.) There will be bound states of the exciton sys-
tem having total energies lower than the bottom of the conduction band.

The problem is the hydrogen atom problem if the energy surfaces for the
electron and hole are spherical and nondegenerate. The energy levels referred
to the top of the valence band are given by a modified Rydberg equation

(CGS) (32)

Here n is the principal quantum number and " is the reduced mass:

(33)

formed from the effective masses me, mh of the electron and hole.
The exciton ground state energy is obtained on setting n ! 1 in (32); this

is the ionization energy of the exciton. Studies of the optical absorption lines
in cuprous oxide, Cu2O, at low temperatures give results for the exciton level
spacing in good agreement with the Rydberg equation (32) except for transi-
tions to the state n ! 1. An empirical fit to the lines of Fig. 10 is obtained with
the relation #(cm"1) ! 17,508 " (800/n2). Taking ! ! 10, we find " 0.7 m
from the coefficient of 1/n2. The constant term 17,508 cm"1 corresponds to an
energy gap Eg ! 2.17 eV.

Exciton Condensation into Electron-Hole Drops (EHD)

A condensed phase of an electron-hole plasma forms in Ge and Si when
maintained at a low temperature and irradiated by light. The following sequence
of events takes place when an electron-hole drop (EHD) is formed in Ge: The
absorption of a photon of energy !$ # Eg produces a free electron and free hole,
with high efficiency. These combine rapidly, perhaps in 1 ns, to form an exciton.
The exciton may decay with annihilation of the e-h pair with a lifetime of 8 "s.

If the exciton concentration is sufficiently high—over 1013 cm"3 at 2 K—
most of the excitons will condense into a drop. The drop lifetime is 40 "s, but
in strained Ge may be as long as 600 "s. Within the drop the excitons dissolve
into a degenerate Fermi gas of electrons and holes, with metallic properties:
this state was predicted by L. V. Keldysh.
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This is similar to the hydrogen atom problem
and the energy levels referred to the top of the
valence band are given by

Here n is the principal quantum number and μ
is the reduced mass:

Weakly Bound (Mott-Wannier) Excitons

Consider an electron in the conduction band and a hole in the valence
band. The electron and hole attract each other by the coulomb potential

(CGS) (31)

where r is the distance between the particles and ! is the appropriate dielec-
tric constant. (The lattice polarization contribution to the dielectric constant
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(CGS) (32)

Here n is the principal quantum number and " is the reduced mass:

(33)

formed from the effective masses me, mh of the electron and hole.
The exciton ground state energy is obtained on setting n ! 1 in (32); this
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Frenkel Excitons

• The relation (21) does not exclude spectral structure in a crystal, because
transitions accumulate at frequencies for which the bands c, v are parallel—
that is, at frequencies where

(22)

At these critical points in k space the joint density of states Dc(!v !
!")Dv(!v) is singular, according to the same argument we used in (5.37) to
show that the density of phonon modes D(") is singular when k" is zero.

• The pseudopotential method for calculating energy bands helps identify the
positions in the Brillouin zone of the critical points found in modulation
spectra. Band-band energy differences can be calculated with an accuracy as
good as 0.1 eV. The experimental results can then be fed back to give im-
provements in the pseudopotential calculations.

EXCITONS

Reflectance and absorption spectra often show structure for photon
energies just below the energy gap, where we might expect the crystal to be
transparent. This structure is caused by the absorption of a photon with the
creation of a bound electron-hole pair. An electron and a hole may be bound
together by their attractive coulomb interaction, just as an electron is bound to
a proton to form a neutral hydrogen atom.

The bound electron-hole pair is called an exciton, Fig. 4. An exciton can
move through the crystal and transport energy; it does not transport charge

"

"k[!c(k) # !v(k)] $ 0� .
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e

h

Figure 4a  An exciton is a bound electron-hole pair,
usually free to move together through the crystal. In
some respects it is similar to an atom of positronium,
formed from a positron and an electron. The exciton
shown is a Mott-Wannier exciton: it is weakly bound,
with an average electron-hole distance large in com-
parison with the lattice constant.
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Figure 4b  A tightly-bound or Frenkel exciton shown local-
ized on one atom in an alkali halide crystal. An ideal Frenkel
exciton will travel as a wave throughout the crystal, but the
electron is always close to the hole.

DI���RYE����������������1.��1BHF����

In a tightly bound exciton, the excitation is localized on or near a single atom: the hole
is usually on the same atom as the electron although the pair may be anywhere in the
crystal. A Frenkel exciton is essentially an excited state of a single atom, but the
excitation can hop from one atom to another by virtue of the coupling between
neighbors.

When the hamiltonian of the system operates on the function !j with the
jth atom excited, we obtain

(25)

where " is the free atom excitation energy; the interaction T measures the rate
of transfer of the excitation from j to its nearest neighbors, j ! 1 and 
j " 1. The solutions of (25) are waves of the Bloch form:

(26)

To see this we let operate on #k:

(27)

from (25). We rearrange the right-hand side to obtain

(28)

so that the energy eigenvalues of the problem are

(29)Ek # " " 2T cos ka� ,

!#k # !
j

 e 

ijka[" " T(e 

ika " e!ika)]!j # (" " 2T cos ka)#k� ,

!#k # !
j

 e 

ijka !!j # !
j

 e 

ijka ["!j " T(!j!1 " !j"1)]� ,

!

#k # !
j

 exp(ijka) !j� .

!!j # "!j " T(!j!1 " !j"1)� ,
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Figure 8  Absorption spectrum of solid krypton at 20 K. (After G. Baldini.)
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solid krypton at 20 K

Atomic krypton has its lowest strong atomic transition at 9.99 eV. The corresponding
transition in the crystal is closely equal and is at 10.17 eV. The energy gap in the
crystal is 11.7 eV, so the exciton ground state energy is 11.7 − 10.17 ≃ 1.5 eV, referred
to a free electron and free hole separated and at rest in the crystal.



Free-carrier absorption can be viewed as intraband absorption – the electron
absorbing the photon remains in the same band. Free-carrier absorption is
obviously important for metals, and is often of importance for semiconductors. Free
electronic systems can be treated classically when their de Broglie wavelengths are
small compared to the average interparticle separations. For many purposes, the
process can be viewed classically by Drude theory with a relaxation time of τ ≡ 1/ω0.

Intraband Transition

Assuming a sinusoidal electric field E = E0exp(−iωt) and using an effective mass m*
rather than m:
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Free-carrier absorption can be viewed as intraband absorption–the electron ab-
sorbing the photon remains in the same band.3 Free-carrier absorption is obviously 
important for metals, and is often of importance for semiconductors. The electron 
is accelerated by the photon and gains energy, but since the wave vector of the 
photon is negligible, something else such as a phonon needs to be involved. For 
many purposes, the process can be viewed classically by Drude theory with a re-
laxation time of Ĳ Ł 1/Ȧ0. This relaxation time defines a frictional force constant 
m*/Ĳ, where the viscous like frictional force is proportional to the velocity. 

We will use classical theory here, but it is worthwhile to make a few com-
ments. It is common to deal with a semiclassical picture of radiation. There we 
treat the radiation classically, but the underlying electronic systems that absorb 
and emit the radiation we treat quantum mechanically. Radiation can be treated 
classically when it is intense enough to have many photons in each mode. Free-
electronic systems can be treated classically when their de Broglie wavelengths 
are small compared to the average interparticle separations. 

The de Broglie wavelength can be estimated from the momentum as estimated 
from equipartition. In practice, this means that for temperatures that are not too 
low and densities that are not too high, then classical mechanics should be valid. 
Bound systems are more complicated, but in general, classical mechanics works at 
higher quantum numbers (higher bound-state energies). In any case, classical and 
quantum results often overlap in validity well beyond where one might naively 
expect. 

The classical theory can be written, assuming a sinusoidal electric field 
E = E0exp(íiȦt) (note these are for free-electrons (e > 0) with damping). We also 
generalize by using an effective mass m* rather than m: 

 )iexp(0 ZW
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 eExmxm ��� . (10.102) 

Note this is just (9.1) with Ȧ0 = 0, as appropriate for free charges. Seeking a 
steady-state solution of the form x = x0exp(íiȦĲ), we find 
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which is (9.2) with Ȧ0 = 0. Thus, the polarization is given by 

 ENexP L )( HH � � , (10.104) 

where İL is the contribution to the dielectric constant of everything except the free 
carriers (generalizing (9.3)). The frequency-dependent dielectric constant is 
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3 See also, e.g., Ziman [25, Chap. 8] and Born and Wolf [10.1]. 

Seeking a steady-state solution of the form x = x0exp(−iωt), we find 

x = (eE/m*)(ω2 + iω/τ)−1 = (eE/m*)(ω2 + iωω0)−1 

The polarization P due to the free carriers with density N is

P = −nex = χnE = −(NeE/m*)(ω2 + iωω0)−1 = − ωp
2 (ω2 + iωω0)−1E

Here ωp
2 = Ne/m* , and ωp is the plasma frequency. 

ϵ(ω) =  1 + χ(ω) = 1− ωp
2 (ω2 + iωω0)−1



The complex dielectric constant ϵn is related to the refraction index n, and its real
part ϵ‘(ω) as well as imaginary part ϵ”(ω) are

ϵ‘(ω) =  n2 – K2 = 1 − ωp
2 (ω2 + ω0

2)−1

ϵ”(ω) =  2nK = ωp
2 (ω0/ω)(ω2 + ω0

2)−1

(i) Low frequency region: ω << ω0 or ω/ω0 << 1. We obtain
ϵ‘(ω) = n2 – K2≃ 1 − ωp

2/ω0
2 ; ϵ”(ω) = 2nK ≃ (ω0/ω) >>1

Here the imaginary part (of the dielectric constant) is much greater than the real
part and we have high reflection because .

(ii) Relaxation region: ω0 << ω << ωp. We obtain
ϵ‘(ω) = n2 – K2≃ 1 − ωp

2/ω2 ; ϵ”(ω) = 2nK ≃ (ωp/ω)2(ω0/ω) < ϵ‘(ω)
From these two relations, the imaginary part of the refractive index K is much
greater than its real part n, so the metal is still strongly reflecting.

The plasma frequency ωp is proportional to the free-carrier concentration, ω0
measures the electron–phonon coupling and ω is the frequency of light.

The result is the motivation for the introduction of the energy loss function
!Im{1/!(",k)} and it is also a motivation for experiments on energy losses by
fast electrons in thin films.

If the dielectric function is independent of k, the power loss is

(44)

where !k0 is the maximum possible momentum transfer from the primary par-
ticle to an electron of the crystal. Figure 19 shows the excellent experimental
agreement between values of !""(") deduced from optical reflectivity measure-
ments with values deduced from electron energy loss measurements.

SUMMARY

• The Kramers-Kronig relations connect the real and imaginary parts of a
response function:

• The complex refractive index N(") # n(") $ iK("), where n is the refrac-
tive index and K is the extinction coefficient; further, !(") # N2("), whence
!"(") # n2 ! K2 and !""(") # 2nK.

• The reflectance at normal incidence is
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Figure 19  !""(") for Cu and Au; the bold lines are from energy loss measurements by J. Daniels, and
the other lines were calculated from optical measurements by D. Beaglehole, and L. R. Canfield et al.
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(iii) Ȧp << Ȧ or Ȧp/Ȧ << 1. This is the ultraviolet region where we also assume 
Ȧ >> Ȧ0. 

 1)( 22 #� inn , (10.125) 

so 
 1))((  �� ii nnnn . (10.126) 

2nni = (Ȧp/Ȧ)2(1/ȦĲ) is very small. Both n and ni are not very small, therefore ni is 
very small. Therefore, 
 1 , #!! nnn i . (10.127) 

Therefore, 
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is very small. There is little reflectance since this is the ultraviolet transparency 
region. We summarize our results in Fig. 10.10. See also Seitz [82, p 639], Ziman 
[25, 1st edn, p 240], and Fox [10.12]. 

 
Fig. 10.10. Sketch of absorption and reflection in metals 

Absorption and reflection of metals 

(iii) Ultraviolet region: ω >> ωp, or ω/ωp >> 1. We obtain

ϵ‘(ω) = n2 – K2≃ 1 ; ϵ”(ω) = 2nK ≃ (ωp/ω)3 << ϵ‘(ω)
The imaginary part of the refractive index K is much smaller than its real part n,
and there is little reflectance since this is the ultraviolet transparency region.

1	=	α +	R +	T



Plasmons
A plasmon is a quantum of plasma oscillation. The plasmon can be considered as
a quasiparticle since it arises from the quantization of plasma oscillations, just
like phonons are quantizations of mechanical vibrations. Thus, plasmons are
collective (a discrete number) oscillations of the free electron gas density. For
example, at optical frequencies, plasmons can couple with a photon to create
another quasiparticle called a plasmon polariton. For a free-electron in an electric
field E we have
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The plasma edge, or the region around the plasma frequency deserves a little 

more attention. Using Maxwell’s equations we have 
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and we will include any charge motion in P. Therefore, 
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Note here İĺİ/İ0. Assume E = E0exp(íiȦt)exp(ik�r). We obtain, as shown below 

(10.142), (10.143), for the wave vector 

 � � )~)(()(
2222

00
2

pkck ZZHZHPZH �f � . (10.133) 

For a free-electron in an electric field we have already derived the plasma fre-

quency in Sect. 9.4. We give here an alternative simple derivation and bring out a 

few new features, 
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and
Then,
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more attention. Using Maxwell’s equations we have 
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and we will include any charge motion in P. Therefore, 

 EDD HH
w
wP 02

2

0
2

,   �
t

E . (10.132) 

Note here İĺİ/İ0. Assume E = E0exp(íiȦt)exp(ik�r). We obtain, as shown below 

(10.142), (10.143), for the wave vector 
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For a free-electron in an electric field we have already derived the plasma fre-

quency in Sect. 9.4. We give here an alternative simple derivation and bring out a 

few new features, 
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and : Plasmon frequency
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If the positive ion core background has a dielectric constant of İ(�) that is about 
constant, then (10.141) is modified 
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When the frequency is less than the plasma frequency the squared wave vector is 
negative (10.133) and gives us total reflection. Above the plasma frequency, the 
wave vector squared is positive and the material is transparent. That is, simple met-
als should reflect in the visible and be transparent in the ultraviolet, as we have al-
ready seen. 

It is also good to remember that at the plasma frequency the electrons undergo 
low-frequency longitudinal oscillations. See Sect. 9.4. Specifically, note that set-
ting İ(Ȧ) = 0 defines a frequency Ȧ = ȦL corresponding to longitudinal plasma os-
cillations. 
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Here we have neglected the dielectric constant of the positive ion cores. 
The plasma frequency is also a free longitudinal oscillation. If we have a doped 

semiconductor with the plasma frequency less than the bandgap over Planck’s 
constant, one can detect the plasma edge, as illustrated in Fig. 10.11. See also Fox 
op cit, p156. Hence, we can determine the electron concentration. 

 
Fig. 10.11. Reflectivity of doped semiconductor, sketch 
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where

If the positive ion core background has a dielectric constant of ε(∞) that is about
constant, then



Polaritons
Polaritons are quasiparticles resulting from strong coupling of electromagnetic
waves with an electric or magnetic dipole-carrying excitation. The polariton is
a bosonic quasiparticle, which has a major feature of a strong dependency of the
propagation speed of light through the crystal on the frequency of the photon.

A polariton is the result of the combination of a photon with a polar excitation in a
material. The following are types of polaritons:
• Phonon polaritons result from coupling of an infrared photon with an

optical phonon;
• Exciton polaritons result from coupling of visible light with an exciton;
• Intersubband polaritons result from coupling of an infrared or terahertz photon

with an intersubband excitation;
• Surface plasmon polaritons result from coupling of surface plasmons with light.



Polar solids carry lattice polarization waves and hence can interact with electro-
magnetic waves, but by selection rules and conservation laws, only transverse
optical phonons couple to electromagnetic waves. The dispersion relations for
photons and the phonons of the polarization waves can cross. When these
dispersion relations cross, the resulting quanta turn out to be neither photons nor
phonons but mixtures called polaritons.

Phonon Polaritons
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10.10  Lattice Absorption, Restrahlen, and Polaritons (B) 

10.10.1  General Results (A) 

Polar solids carry lattice polarization waves and hence can interact with electro-
magnetic waves (only transverse optical phonons couple to electromagnetic waves 
by selection rules and conservation laws). The dispersion relations for photons and 
the phonons of the polarization waves can cross. When these dispersion relations 
cross, the resulting quanta turn out to be neither photons nor phonons but mixtures 
called polaritons. One way to view this is shown in Fig. 10.12. We now discuss 
this process in more detail. We start by considering lattice vibrations in a polar 
solid. We will later add in a coupling with electromagnetic waves. The displace-
ment of the tth ion in the lth cell for the jth component, satisfies 
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and U describes the potential of interaction of the ions. If vtl is a constant, 

 ¦ c c  h ht ttG 0)( . (10.147) 

 
Fig. 10.12. Polaritons as mixtures of photons and transverse phonons. The mathematics of 
this model is developed in the text 

Since n = ε1/2 with σ = 0, if ε < 0, one gets high
reflectivity with n pure imaginary. Since
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10.10.2  Summary of the Properties of İ(q, Ȧ) (B) 

Since n = İ1/2
 with ı = 0 (see (10.8)), if İ < 0, one gets high reflectivity (by (10.15) 

with nc pure imaginary). Note if 
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and one has high reflectivity (R ĺ 1). Thus, one expects a whole band of forbid-

den nonpropagating electromagnetic waves. ȦT is called the Restrahl frequency 

and the forbidden gap extends from ȦT to ȦL. We only get Restrahl absorption in 

semiconductors that show ionic character; it will not happen in Ge and Si. We 

give some typical values in Table 10.2. See also Born and Huang [2, p118]. 
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If

then  ε < 0.

A band of forbidden non-propagating EM
waves extends from ωT to ωL. ωT is called
the Restrahl frequency.



Exciton Polaritons
Exciton polariton is a type of polariton, a hybrid light and matter quasiparticle
arising from the strong coupling of the electromagnetic dipolar oscillations
of excitons and photons. The coupling of the two oscillators, photons modes in the
semiconductor optical microcavity and excitons of the quantum wells, results in the
energy anti-crossing of the bare oscillators, giving rise to the two new normal
modes for the system, known as the upper and lower polariton resonances (or
branches). The energy shift is proportional to the coupling strength.

The higher energy or upper mode
(UPB, upper polariton branch) is
characterized by the photonic and
exciton fields oscillating in-phase,
while the LPB (lower polariton
branch) mode is characterized by
them oscillating with phase-
opposition.



Surface Plasma Polaritons
Surface plasmons are those plasmons that are confined to surfaces and that interact
strongly with light resulting in a polariton. They occur at the interface of a material
exhibiting positive real part of their relative permittivity, i.e. dielectric constant, (e.g.
vacuum, air, glass and other dielectrics) and a material whose real part of
permittivity is negative at the given frequency of light, typically a metal or heavily
doped semiconductors. In addition to opposite sign of the real part of the
permittivity, the magnitude of the real part of the permittivity in the negative
permittivity region should typically be larger than the magnitude of the permittivity
in the positive permittivity region, otherwise the light is not bound to the surface.
With the light of 632.8 nm wavelength provided by a He-Ne laser, interfaces
supporting surface plasmons are often formed by metals like silver or gold (negative
real part permittivity) in contact with dielectrics such as air or silicon dioxide. Many
geometric structures have been explored due to the capability of surface plasmons
to confine light below the diffraction limit of light.

SPPs can be used to channel light efficiently into nanometer scale volumes, leading
to direct modification of resonate frequency dispersion properties, as well as field
enhancements suitable for enabling strong interactions with nonlinear materials.



Nonlinear optics is related to the analysis of the nonlinear interaction between light
and matter when the light-induced changes of the medium optical properties occur.
The nonlinear optical effects are weak, and typically observed only at very high light
intensities (values of atomic electric fields, typically 108 V/m) such as those provided
by lasers. A typical nonlinear optical process consists of two stages. First, the intense
coherent light induces a nonlinear response of the medium, and then the modified
medium influences the optical radiation in a nonlinear way. The nonlinear medium is
described by a system of the dynamic equations including the optical field.

Nonlinear Optical Process

Nonlinear optical phenomena, in which the optical fields are not too large, can be
described by a Taylor series expansion of the dielectric polarization density P(t) at
time t in terms of the electric field E(t):

where the coefficients χ(n) are the n-th-order susceptibilities of the medium, and the
presence of such a term is generally referred to as an n-th-order nonlinearity. In
general, χ(n) is an (n + 1)-th-rank tensor representing both the polarization
dependent nature of the interaction and the symmetries of the nonlinear material.



Central to the study of electromagnetic waves is the wave equation. Starting
with Maxwell's equations in an isotropic space, containing no free charge, it can be
shown that

Wave Equation in a Nonlinear Material

where PNL is the nonlinear part of the polarization density, and n is the refractive
index, which comes from the linear term in P.

or

If E(t) is made up of two components at frequencies ω1 and ω2, then

In general, an n-th order nonlinearity will lead to (n + 1)-wave mixing. As an
example, if we consider only a second-order nonlinearity (three-wave mixing), then
the polarization P takes the form .

which has frequency components at 2ω1, 2ω2, ω1+ω2, ω1−ω2, and 0, corres-
ponding to the nonlinear effects known as second harmonic, sum
frequency, difference frequency generations and optical rectification, respectively.



In a typical situation, the electrical fields are traveling waves described by

Phase Matching

at position x, with the wave vector , where c is the velocity of light
in vacuum, and n(ωj) is the index of refraction of the medium at angular
frequency ωj. Thus, the second-order polarization at angular frequency ω3 = ω1 +
ω2 is

The above equation is known as the phase-matching condition. Typically, three-wave
mixing is done in a birefringent crystalline material, where the refractive
index depends on the polarization and direction of the light that passes through. The
polarizations of the fields and the orientation of the crystal are chosen such that the
phase-matching condition is fulfilled. This technique is called angle tuning.

Constructive interference, and therefore a high-intensityω3 field, will occur only if

At each position x within the medium, the oscillating second-order polarization
radiates at angular frequencyω3 and a corresponding wave vector



800 nm: barium borate (BBO)
806 nm: lithium iodate (LiIO3)
860 nm: potassium niobate (KNbO3)
980 nm: KNbO3

1064 nm: monopotassium phosphate (KDP), lithium triborate (LBO) and β-BBO
1300 nm: gallium selenide (GaSe)
1319 nm: KNbO3, BBO, KDP, potassium titanyl phosphate (KTP), lithium 

niobate (LiNbO3), LiIO3, and ammonium dihydrogen phosphate (ADP)
1550 nm: potassium titanyl phosphate (KTP), lithium niobate (LiNbO3)

Common second-harmonic-generating (SHG) materials:

One of the most commonly used frequency-mixing processes is frequency doubling,
or second-harmonic generation. Practically, frequency doubling is carried out by
placing a nonlinear medium in a laser beam. While there are many types of
nonlinear media, the most common media are crystals. These crystals have the
necessary properties of being strongly birefringent, having a specific crystal
symmetry, being transparent for both the impinging laser light and the frequency-
doubled wavelength, and having high damage thresholds, which makes them
resistant against the high-intensity laser light.

Frequency Doubling



Problems
1. Hagen-Rubens relation for infrared reflectivity of metals. The complex

refractive index n + iK of a metal for ω𝜏 << 1 is given by

This result is used in the theory of superconductivity. If at very high frequencies
(such as x-ray frequencies) !!!(") is identical for the superconducting and normal
states, then we must have

But at frequencies 0 " " " "g within the superconducting energy gap the real part
of the conductivity of a superconductor vanishes, so that in this region the integral
on the left-hand side is lower by !!n"g. There must be an additional contribution
to !!s to balance this deficiency. (b) Show that if !!s(" " "g) " !!n(" " "g), as is ob-
served experimentally, then !!s(") can have a delta function contribution at " # 0,
and from the delta function there is a contribution !!!s (") !!n "g/". The delta
function corresponds to infinite conductivity at zero frequency. (c) By elementary
consideration of the classical motion of conduction electrons at very high frequen-
cies, show that

(CGS)

a result found by Ferrell and Glover.

5. Dielectric constant and the semiconductor energy gap. The effect on #!!(") 
of an energy gap "g in a semiconductor may be approximated very roughly by 
substituting $(" $ "g) for $(") in the response function (16); that is, we take
#!!(") # (2%ne2/m")%$(" $ "g). This is crude because it puts all the absorption at
the gap frequency. The factor 1/2 enters as soon as we move the delta function
away from the origin, because the integral in the sum rule of Problem 2 starts at the
origin. Show that the real part of the dielectric constant on this model is

It follows that the static dielectric constant is #!(0) # 1 % "2
p/"2

g, widely used as a
rule of thumb.

6. Hagen-Rubens relation for infrared reflectivity of metals. The complex refrac-
tive index n % iK of a metal for "& & 1 is given by

(CGS)

where !0 is the conductivity for static fields. We assume here that intraband
currents are dominant; interband transitions are neglected. Using the result of
Problem 3 for the reflection coefficient at normal incidence, show that

(CGS)

provided that !0 ' ". This is the Hagen-Rubens relation. For sodium at room 
temperature, !0 2.1 ( 1017 s$1 in CGS and & # 3.1 ( 10$14 s, as deduced from !
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where σ0 is the conductivity for static fields. We assume here that intraband
currents are dominant; interband transitions are neglected. For the reflection
coefficient at normal incidence, show that
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provided that σ0 >> ω. This is the Hagen-Rubens relation. For sodium at room
temperature, σ0≃ 2.1 × 1017 s−1 in CGS and 𝜏 = 3.1 × 10−14 s, as deduced from
𝜏 = σ0 m/ne2. Radiation of 10 μm has ω = 1.88 × 1014 s−1 , so that the Hagen-
Rubens result should apply: R = 0.976. The result calculated from
experimental values of n and K is 0.987. Hint: If σ0 >> ω, then n2 ≃ K2 . This
simplifies the algebra.



2. For intermediate frequencies ωT < ω < ωL, given

590      10 Optical Properties of Solids 

10.4 (a) From [x, px] = i=, show that 
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(b) For ê  = î , show the oscillator strength fij obeys the sum rule �jfij = 1. 

10.5 For intermediate frequencies ȦT < Ȧ < ȦL, given (by (10.198)) 
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where c is a defined as constant within the derivation. In this process, show 
intermediate derivations for the following equations defining constants as 
necessary: 
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10.6 This problem fills in the details of Sect. 10.11.2. 
(a) Describe the factors that make up the generation rate 
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and the equation of motion
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where c is a defined as constant within the derivation. In this process, show 
intermediate derivations for the following equations defining constants as 
necessary: 
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